ruckus.embedding.RandomFourierRBF class¶
- class ruckus.embedding.RandomFourierRBF(n_components=100, gamma=None, complex=False, engine=None, engine_params=None, take=None, filter=None, copy_X=True)[source]¶
Bases:
ruckus.base.RKHSRandomFourierRBFgenerates an embedding map \(\phi:X\rightarrow H\) by constructing random Fourier phase signals; that is,\[\begin{split}\phi(x) = \frac{1}{\sqrt{K}}\begin{bmatrix} e^{i x\cdot w_1} \\ \vdots \\ e^{i x\cdot w_K} \end{bmatrix}\end{split}\]where \(K\) is the specified
n_componentsand \((w_1,\dots,w_K)\) is drawn from a multivariate normal with covariance matrix \(\mathrm{diag}(\gamma,\dots,\gamma)\). The result that the kernel \(k(x,y) = \left<\phi(x),\phi(y)\right>\) is approximately a Gaussian RBF with scale parameter \(\gamma\) [1].Rather than drawing a truly random set of phase vectors (which converges \(O(n^{-1/2})\)) we use quasi-Monte Carlo sampling via
scipy.stats.qmc.QMCEngine(), which converges \(O((\log n)^d n^{-1})\) where \(d\) corresponds to the number of features in \(X\).- Parameters
n_components (
int) – Default = 100. The number of random Fourier features to generate.gamma (
float) – Default =None. Specifies the scale parameter of the Gaussian kernel to be approximated. IfNone, set to1/n_features.complex (
bool) – Default =False. IfFalse, the output vector has shape(n_samples,2*n_components), where real and imaginary parts are written in pairs.engine (child class of
scipy.stats.qmc.QMCEngine()) – Default =None. The sampler class to use. IfNone, set toscipy.stats.qmc.Sobol().engine_params (
dict) – Default =None. Initialization parameters to use forengine.take (
numpy.ndarrayofdtype intorbool, ortupleofnumpy.ndarrayinstances of typeint, orNone) – Default =None. Specifies which values to take from the datapoint for transformation. IfNone, the entire datapoint will be taken in its original shape. Ifboolarray, acts as a mask setting values markedFalseto0and leaving values marked True unchanged. Ifintarray, the integers specify the indices (along the first feature dimension) which are to be taken, in the order/shape of the desired input. Iftupleofintarrays, allows for drawing indices across multiple dimensions, similar to passing atupleto anumpyarray.filter (
numpy.ndarrayofdtype floatorNone) – Default =None. Specifies a linear preprocessing of the data. Applied after take. IfNone, no changes are made to the input data. If the same shape as the input datapoints,filterand the datapoint are multiplied elementwise. Iffilterhas a larger dimension than the datapoint, then its first dimensions will be contracted with the datapoint vianumpy.tensordot(). The final shape is determined by the remaining dimensions of filter.copy_X (
bool) – Default =True. IfTrue, inputXis copied and stored by the model in theX_fit_attribute. If no further changes will be done toX, settingcopy_X=Falsesaves memory by storing a reference.
- Parameters
ws_ (
numpy.ndarrayof shape(n_components,n_features)) – Randomly-selected phase coefficients used to generate Fourier features.shape_in_ (
tuple) – The required shape of the input datapoints, aka the shape of the domain space \(X\).shape_out_ (
tuple) – The final shape of the transformed datapoints, aka the shape of the Hilbert space \(H\).X_fit_ (
numpy.ndarrayof shape(n_samples,)+self.shape_in_) – The data which was used to fit the model.
- fit(X, y=None)[source]¶
Fit the model from data in
X.- Parameters
X (
numpy.ndarrayof shape(n_samples, n_features_1,...,n_features_d)) – Training vector, wheren_samplesis the number of samples and(n_features_1,...,n_features_d)is the shape of the input data. Must be consistent with preprocessing instructions inself.takeandself.filter.y (Ignored) – Not used, present for API consistency by convention.
- Returns
The instance itself
- Return type
RKHS
- transform(X)[source]¶
Transform
X.- Parameters
X (
numpy.ndarrayof shape(n_samples, n_features_1,...,n_features_d)) – Data vector, wheren_samplesis the number of samples and(n_features_1,...,n_features_d)is the shape of the input data. These must matchself.shape_in_.- Returns
The transformed data
- Return type
numpy.ndarrayof shape(n_samples,)+self.shape_out_